Sphere#
- class ansys.geometry.core.shapes.surfaces.sphere.Sphere(origin: numpy.ndarray | ansys.geometry.core.typing.RealSequence | ansys.geometry.core.math.point.Point3D, radius: pint.Quantity | ansys.geometry.core.misc.measurements.Distance | ansys.geometry.core.typing.Real, reference: numpy.ndarray | ansys.geometry.core.typing.RealSequence | ansys.geometry.core.math.vector.UnitVector3D | ansys.geometry.core.math.vector.Vector3D = UNITVECTOR3D_X, axis: numpy.ndarray | ansys.geometry.core.typing.RealSequence | ansys.geometry.core.math.vector.UnitVector3D | ansys.geometry.core.math.vector.Vector3D = UNITVECTOR3D_Z)#
Bases:
ansys.geometry.core.shapes.surfaces.surface.SurfaceProvides 3D sphere representation.
Overview#
Check a parameter is within the parametric range of the surface. |
|
Check a point is contained by the surface. |
Create a transformed copy of the sphere from a transformation matrix. |
|
Create a mirrored copy of the sphere along the y-axis. |
|
Evaluate the sphere at the given parameters. |
|
Project a point onto the sphere and evaluate the sphere. |
|
Parameterization of the sphere surface as a tuple (U, V). |
Equals operator for the |
Import detail#
from ansys.geometry.core.shapes.surfaces.sphere import Sphere
Property detail#
- property Sphere.origin: ansys.geometry.core.math.point.Point3D#
Origin of the sphere.
- property Sphere.radius: pint.Quantity#
Radius of the sphere.
- property Sphere.dir_x: ansys.geometry.core.math.vector.UnitVector3D#
X-direction of the sphere.
- property Sphere.dir_y: ansys.geometry.core.math.vector.UnitVector3D#
Y-direction of the sphere.
- property Sphere.dir_z: ansys.geometry.core.math.vector.UnitVector3D#
Z-direction of the sphere.
- property Sphere.surface_area: pint.Quantity#
Surface area of the sphere.
- property Sphere.volume: pint.Quantity#
Volume of the sphere.
Method detail#
- Sphere.transformed_copy(matrix: ansys.geometry.core.math.matrix.Matrix44) Sphere#
Create a transformed copy of the sphere from a transformation matrix.
- Parameters:
- matrix
Matrix44 4X4 transformation matrix to apply to the sphere.
- matrix
- Returns:
SphereNew sphere that is the transformed copy of the original sphere.
- Sphere.mirrored_copy() Sphere#
Create a mirrored copy of the sphere along the y-axis.
- Returns:
SphereNew sphere that is a mirrored copy of the original sphere.
- Sphere.evaluate(parameter: ansys.geometry.core.shapes.parameterization.ParamUV) SphereEvaluation#
Evaluate the sphere at the given parameters.
- Parameters:
- parameter
ParamUV Parameters (u,v) to evaluate the sphere at.
- parameter
- Returns:
SphereEvaluationResulting evaluation.
- Sphere.project_point(point: ansys.geometry.core.math.point.Point3D) SphereEvaluation#
Project a point onto the sphere and evaluate the sphere.
- Parameters:
- point
Point3D Point to project onto the sphere.
- point
- Returns:
SphereEvaluationResulting evaluation.
- Sphere.parameterization() tuple[ansys.geometry.core.shapes.parameterization.Parameterization, ansys.geometry.core.shapes.parameterization.Parameterization]#
Parameterization of the sphere surface as a tuple (U, V).
The U parameter specifies the longitude angle, increasing clockwise (east) about
dir_z(right-hand corkscrew law). It has a zero parameter atdir_xand a period of2*pi.The V parameter specifies the latitude, increasing north, with a zero parameter at the equator and a range of [-pi/2, pi/2].
- Returns:
tuple[Parameterization,Parameterization]Information about how a sphere’s u and v parameters are parameterized, respectively.
- abstractmethod Sphere.contains_param(param_uv: ansys.geometry.core.shapes.parameterization.ParamUV) bool#
Check a parameter is within the parametric range of the surface.
- abstractmethod Sphere.contains_point(point: ansys.geometry.core.math.point.Point3D) bool#
Check a point is contained by the surface.
The point can either lie within the surface or on its boundary.